Pipeline implementation II
Overview

• Line Drawing Algorithms
 – DDA
 – Bresenham
• Filling polygons
• Antialiasing
Rasterization

• Rasterization (scan conversion)
 – Determine which pixels that are inside primitive specified by a set of vertices
 – Produces a set of fragments
 – Fragments have a location (pixel location) and other attributes such color and texture coordinates that are determined by interpolating values at vertices

• Pixel colors determined later using color, texture, and other vertex properties
Scan Conversion of Line Segments

• Start with line segment in window coordinates with integer values for endpoints

• Assume implementation has a `write_pixel` function

\[m = \frac{\Delta y}{\Delta x} \]

\[y = mx + h \]
DDA Algorithm

- **Digital Differential Analyzer**
 - DDA was a mechanical device for numerical solution of differential equations
 - Line $y = mx + h$ satisfies differential equation $\frac{dy}{dx} = m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

- **Along scan line $\Delta x = 1$**

  ```
  For(x=x1; x<=x2,ix++) {
      y+=m;
      write_pixel(x, round(y), line_color)
  }
  ```
Problem

• DDA = for each x plot pixel at closest y
 – Problems for steep lines
Using Symmetry

• Use for $1 \geq m \geq 0$
• For $m > 1$, swap role of x and y
 – For each y, plot closest x
Problem

• Floating point operations are expensive
 – Compared to integer operations
• Floating point accuracy
 – Error can accumulate
Bresenham’s Algorithm

• DDA requires one floating point addition per step
• We can eliminate all fp through Bresenham’s algorithm
• Consider only $1 \geq m \geq 0$
 – Other cases by symmetry
• Assume pixel centers are at half integers
• If we start at a pixel that has been written, there are only two candidates for the next pixel to be written into the frame buffer
Candidate Pixels

\[1 \geq m \geq 0 \]

\[j + \frac{3}{2} \]

\[j + \frac{1}{2} \]

\[j - \frac{1}{2} \]

\[i + \frac{1}{2} \]

\[i + \frac{3}{2} \]

Note that line could have passed through any part of this pixel.
Decision Variable

d = Δx(a-b)

d is an integer
d < 0 use upper pixel
d > 0 use lower pixel
Incremental Form

• More efficient if we look at d_k, the value of the decision variable at $x = k$

\[
d_{k+1} = d_k - 2\Delta y, \quad \text{if } d_k > 0
\]
\[
d_{k+1} = d_k - 2(\Delta y - \Delta x), \quad \text{otherwise}
\]

• For each x, we need do only an integer addition and a test
• Single instruction on graphics chips
Polygon Scan Conversion

• Scan Conversion = Fill
• How to tell inside from outside
 – Convex easy
 – Nonsimple difficult
 – Odd even test
 • Count edge crossings
 – Winding number
 odd-even fill
Winding Number

• Count clockwise encirclements of point

winding number = 1

• Alternate definition of inside: inside if winding number ≠ 0
Filling in the Frame Buffer

• Fill at end of pipeline
 – Convex Polygons only
 – Nonconvex polygons assumed to have been tessellated
 – Shades (colors) have been computed for vertices (Gouraud shading)
 – Combine with z-buffer algorithm
 • March across scan lines interpolating shades
 • Incremental work small
Using Interpolation

$C_1 C_2 C_3$ specified by \texttt{glColor} or by vertex shading

C_4 determined by interpolating between C_1 and C_2

C_5 determined by interpolating between C_2 and C_3

interpolate between C_4 and C_5 along span
Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```c
deflood_fill(int x, int y) {
    if(read_pixel(x,y) == WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
    }
}
```
Scan Line Fill

- Can also fill by maintaining a data structure of all intersections of polygons with scan lines
 - Sort by scan line
 - Fill each span

vertex order generated by vertex list
desired order
Data Structure

Scanlines

Intersections

\(j \)
\(j + 1 \)
\(j + 2 \)

\(x_1 \rightarrow x_2 \)
\(x_3 \rightarrow x_4 \)
\(x_4 \rightarrow x_5 \rightarrow x_7 \rightarrow x_8 \)
Aliasing

- Ideal rasterized line should be 1 pixel wide

- Choosing best y for each x (or visa versa) produces aliased raster lines
Antialiasing by Area Averaging

- Color multiple pixels for each x depending on coverage by ideal line

![Original Line](image1)

![Antialiased Line](image2)

![Magnified Original](image3)

![Magnified Antialiased](image4)
Polygon Aliasing

- Aliasing problems can be serious for polygons
 - Jaggedness of edges
 - Small polygons neglected
 - Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color
• Next time
 – Example exam questions and answers
 – See the old exams online on the course page
 – Does not completely reflect the exam this year...