Line segment intersection

- Compute and report all intersections among a set of n line segments.
- A trivial solution based on brute-force:
 - For each pair of line segments: Compute the point of intersection between the lines that contain the line segments; if this point lie on both line segments, we have found an intersection.
 - There are $O(n^2)$ pairs so this takes $O(n^2)$ time.
- So, do we really need to spend $O(n^2)$ time?
 - Yes, there are $\Omega(n^3)$ intersections in the worst case.
 - But there could also be just a few...
 - Interesting question: Is there a way to relate the running time to the number of intersections actually reported?
Output-sensitive algorithms

- An algorithm for which the time (or space) complexity depends not only on the size of the input (n, in our case) but also on the size of the output.
 - As with Jarvis march for computing convex hulls.
- Let \(k \) be the number of intersections found.
 - "Number of pairs of intersecting line segments."
- We will now learn about an output-sensitive algorithm that computes all intersections in \(O(n \log n + k \log n) \) time.
- There exists faster algorithms that run in \(O(n \log n + k) \) time. These are optimal but more complicated, and will not be covered.

Lower bound: \(\Omega(n \log n + k) \)

- The term \(k \) is obvious; we have to output the result.
- The term \(n \log n \) can be shown by a reduction from the following (sort of well-known) problem:
 - ELEMENT-UNIQUENESS:
 - Given a set of \(n \) numbers, \(\{x_1, x_2, \ldots, x_n\} \) are two of them equal?
 - Determining this requires \(\Omega(n \log n) \) time.

Reduction

- Let \(A \) be any algorithm that computes intersections among line segments.
- We can then solve ELEMENT-UNIQUENESS by constructing short line segments for each number in the set, run \(A \), and check the result.
 - Map \(x_i \) to, for instance, the line segment \([x_i, 0), (x_i, 1)]\).
 - Then, \(A \) will report intersections if there are \(i \neq j, x_i = x_j \).
- Since everything else than \(A \) takes \(O(n) \) time, it must be \(A \) that takes \(\Omega(n \log n) \) time.
Observation 1

- Only line segments that overlap if projected onto the y-axis might intersect!

Algorithmic technique: Plane sweep

- Imagine a horizontal line sweeping downwards over the plane, starting above all line segments.
- As this sweep line is moved, we keep track of the set of line segments that it intersects - the *status*.
 - The status contains the intersected line segments ordered by how they intersect the sweep line.
- In general, the status is invariant. It only changes when the sweep line reaches an *event point*.
- An event point is either
 - an end point of a line segment, or
 - a point of intersection between two line segments.

Observation 2

- If two line segments intersect, they must at some time lie next to each other in the status!

Algorithm

- Use an *event queue* (a priority queue) to store event points ordered by their y-coordinate.
- Insert all $2n$ end points of line segments in the beginning.
- Start with an empty status, and go ("sweep") from one event point to the next while keeping invariant that:

 "Above the sweep line all points of intersection have been computed."

Algorithm (cont.)

• This happens at an event point when...
 - An **upper end point** is reached: Insert the new line segment (into the status) and test it for intersections with its neighbors below the sweep line; insert the intersection points as event points, if any.
 - A **point of intersection** is reached: Swap the line segments that intersect and test them for intersections below the sweep line with their new neighbors. If they intersect, insert the points as new event points.
 - A **lower end point** is reached: Delete the line segment and test whether the two new neighbors intersect. If they intersect, insert the points as new event points.

Data structures used

• **Event queue**
 - A balanced binary search tree
 • AVL-trees, red-black trees, etc that support insertion, deletion, neighbor (successor and predecessor), and lookup in $O(\log m)$ time when the tree contains m items.
 • Define an order between the event points (highest first, leftmost to break ties)

• **Status**
 - A balanced binary search tree
 • (One can store anything - not just numbers - in such a tree as long as the items are comparable.)

A degenerate case

Analysis

• We inserted $2n$ endpoints into the event queue:
 - $O(n \log n)$ time.
• Each intersection was inserted as an event point:
 - $O(k \log n)$ time.
• Total:
 - $O(n \log n + k \log n) = O((n+k) \log n)$ time.
Reflection

- O((n+k) log n) time...? Better analysis possible - see Lemma 2.3!
- This is worse than the brute-force solution (O(n^2)) if k is more than O(n^2/log n) but better when k is less.
- It is, however, output sensitive.
- Compare with the incremental algorithm that computes convex hulls from Lecture 1.
 - Our algorithm is also sort-of incremental...
 - ... makes monotone progress and keeps an invariant
 - but still different
 - ... considers not only input points (=end points of line segments) but also intersections that are found during the course of the algorithm.
- To determine if there are intersections, we just need to stop the line sweep as soon as the first intersection is found, if it exists.
 - So, this (simpler) problem can be solved in O(n log n) time.

Doubly-Connected Edge Lists (DCEL)

- A data structure suitable to keep track of subdivisions of the plane into different kinds of regions.

Some basic definitions (Cont.)

- A polygonal chain is a finite concatenation of line segments where consecutive segments share one end point ("One ends where the next starts").
- A simple polygon is a "closed polygonal chain that doesn’t self-intersect".
 - Simple polygons have vertices and edges that forms their boundaries.
 - A convex hull is a simple polygon.
DCEL:s

- Stored data:

 ![DCEL diagram](image)

The overlay of two subdivisions

![Overlay diagram](image)

Euler's formula

- For an embedding of a planar graph with \(v \) vertices, \(e \) edges, and \(f \) faces (regions bounded by edges, including the outer, infinitely-large, region) without crossing edges,

 \[v - e + f = 2. \]

 \((v=7, e=8, f=3)\)

Applying plane sweep

- Maintain a doubly-connected edge list during the sweep over the subdivisions.

 ![Sweep diagram](image)
An application: Boolean operations

union

intersection
difference