Robust and Energy-Efficient Real-Time Systems

Lecture 7: Real-time communication

A concurrent system

A distributed system...

A distributed system...
A distributed system...

- Physically distributed nodes
 - Separate compilation & deployment
- No common memory
 - Only message-based communication
- Non-neglectable communication delay
 - Affects end-to-end response times
- No common clock
 - Each node has its own notion of time
- No delivery guarantees
 - Data loss and partial failures

Distributed system characteristics
Distributed Timber systems

External events = event reception

Baselines = event reception

Local world

On communication delay

Sender baseline
Sender deadline
Receiver baseline

m

m'

communication

Separately scheduled!

On communication protocols

- Mostly presented as layers in a protocol stack (c.f. the OSI model, or TCP/IP)
- Common assumption: an unknown number of nodes, with unknown behavior, share the network
- Another common assumption: a late delivery is better than a failed one, leading to protocols that rely on retransmissions to achieve reliability in presence of losses
- While these are valid assumptions for general purpose networks & the Internet, a consequence is that real-time guarantees cannot be given for such networks
Real-time communication

- Requires problem space to be restricted:
 - Bounded number of communicating nodes
 - Bounded message delays; that is, bounded (and low!) number of retransmissions (corruption \(\approx \) loss)
 - Bounded drift rate between any two local clocks
- Enables full communication delays to be predicted
- Enables failures to be detected using timeouts
- I.e.: fast delivery is better than 100% reliability
- Note: reliability can be built on top of fast communication if needed, but not vice versa!

MAC protocols

- MAC (Medium Access Control) protocols ensure that
 - Only one node is using the communication medium at a time
 - Those nodes that wish to use the medium are offered to do so in an orderly fashion
- As such, a LAN with a MAC protocol acts as shared resource for which the connected nodes compete
- This resource is not controlled by the local task schedulers, though, but by specific networking devices & drivers
- Clearly, the scheduling algorithm imposed by the chosen MAC protocol will affect communication timing

Real-time communication

- Bounded number of nodes means local area networks (LANs) in practice
- Interconnected LANs possible – limited real-time routing if network structure is statically known
- Two special addressing modes well suited for LANs:
 - Broadcast – send to all nodes on the network
 - Multicast – send to all nodes belonging to some identified group
- With LAN communication, queueing time is only determined by the underlying medium access protocol

Communication scheduling

- Contention-free communication
 - Nodes use a predetermined time-slot to send their data
 - Example: TDMA (time-division, multiple access)
- Token-based communication:
 - Nodes send their data in a predetermined order
 - Example: Token Ring (IEEE 802.5)
- Collision-based communication:
 - Nodes contend for the shared medium at run-time
 - Example: Ethernet (IEEE 802.3), CAN (Controller Area Network)
TDMA

- Time-division, multiple access
- Run the bus as a time-triggered process
- Local nodes typically time-triggered as well, synchronized to the bus period

![Diagram of TDMA]

TDMA example: TTP

- The Time-Triggered Protocol (H. Kopetz, TU Wien)
- Advanced hardware/software protocol that uses dual time-shared buses for increased robustness
 - The Single Fault Hypothesis: Any electric/electronic component in the system can fail, but no two independent faults will occur within a certain amount of time.
- Widely deployed in the avionics industry, e.g. to connect flap controllers to its sensors & actuators
- A differently packaged variant called FlexRay is targeting the automotive industry

Ethernet

- Original network medium used a coaxial cable shared by all connected nodes
- The Ethernet MAC protocol uses CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) technique:
 - Senders only send when the medium is silent
 - Two senders starting simultaneously cause detectable collision
 - At collision detect: wait a random length of time and retry
- Due to the built-in repetitions and randomized waiting times, original Ethernet gives no timing guarantees

Switched Ethernet

- Improved variant, uses private half or full duplex twisted pair cables connecting each node to a shared switch:
- Protocol still based on CSMA/CD, but if local links are full duplex, collisions cannot occur!
- Instead, buffer memory in the switch may overflow
- Still, for N known nodes and a switch fitting at least N packets, each node can send a packet up to every $N \times t_{packet}$ without overflow, and with a delay bound of $N \times t_{packet}$
CAN

- The Controller Area Network (Bosch 1991, SAE 1993)
- Also based on contention for a shared bus, but with a controlled arbitration phase that avoids destructive collisions

Simple but sturdy cabling: just two wires (vehicle is gnd)

Used extensively in today's cars to connect embedded controllers and their sensors/actuators, for example in brake anti-locking systems

CAN arbitration

- A node wishing to send a packet of CAN must first initiate an arbitration phase
- Arbitration is based on the priority of each packet
- Nodes losing an arbitration need to wait until the bus is free and another arbitration can take place
- Packet queuing time is thus determined by its priority
- Priorities can be assigned using RM (based on sender's packet rate) or EDF (based on packet deadline)
- Bounds on communication delay can be calculated using well-known techniques

CAN arbitration

Wire-OR bus connection: sending a '1' means pulling the wire low, sending a '0' means leaving it floating

A node accidentally sending at the same time as someone else may thus detect this fact if sending a '0' still results in a low wire

Simultaneous sending utilized during arbitration phase:

- Each node transmits its packet priority bit by bit, from highest to lowest significance
- If a node sends a '0' but sees a '1' it drops out – somebody else's priority is higher
- With unique priorities, only one node will succeed!

11 priority bits gives 2048 priority levels

However, if priorities are determined locally at run-time, clashes cannot be excluded...

In such cases, some priority bits need to be reserved for statically unique node IDs to append

60 nodes (say) require 6 bits – only 5 bits for priorities...

Even with static priorities, not the relatively high ratio between priority bits and packet payload